Testing Metrics Development – Application Dependent

October 19, 2011

Benjamin L. Schenkman
Sandia National Laboratories

Battery Testing Background

 Constant charge and discharge rate at various depth of discharges

· Capacity, Round Trip Efficiency, Self-Discharge, etc.

• Great for comparison of various technologies and benchmarking

Battery Testing Problem

• Battery systems in the field are not constantly charged and discharged

• Testing today is not driven by intended application(s)

Battery Testing Problem

Proposed New Battery Test Methodology

- Gather information regarding application(s)
- Develop and characterize required power delivery or absorption for energy storage system
- Using Auto Regression, create a discrete transfer function that represents the required power signal and scale for single cell
- Use random numbers such as "Gaussian White Noise" to drive a waveform generator that will produce a similar, but not the same, required power signal with all the "wiggles"

Application Information Gathering

Application Information Gathering

Battery Storage Signal Characterization

Model Equation

$$- z(kT) = a_1 z((k-1)T) + a_2 z((k-2)T) + a_3 z((k-3)T) + a_4 k((k-4)T + v(kT))$$

Prediction Based on Model

• Prediction Error

$$- \mathbf{e}(\mathbf{kT}) = \mathbf{z}(\mathbf{kT}) - \mathbf{z}(\mathbf{kT})$$

• Performance Metric

$$- J = ||e||^2/||z||^2$$

• v(kT) is noise input taken as zero mean Gaussian white noise with variance given by the AR modeling calculations

Results of a Sample

Results of a Sample

Results of a Sample

Summary

- Performed signal characterization for the application of frequency response
- Used actual data from PJM in hourly samples
- Performed Auto Regression (AR) to characterize the signal
- Developed a random signal from the AR and compared to original signal
- Started working on creating a discrete transfer function that would represent the power electronics between the batteries and the utility through a different project

Future Tasks

- Compare 1 year of frequency regulation data versus a small subset of data from heavy/light summer/winter loads
- Develop signal for applications that be combined to benefit from multiple revenue streams
- Test AR generated signal versus traditional testing
- Create testing standards based on results
- Complete discrete transfer function representing 3phase power electronics between battery and utility

Acknowledgements

• Dr. Imre Gyuk

U.S. Department of Energy, Energy Storage Research

• Dr. Pramod Khargonekar

Florida State University

